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Abstract:  (+)-4-Deoxygigantecin (1) was totally synthesized from enantiomerically pure (-)-muricatacin (3). Thus, 3 af- 
forded the key intermediate 5 through a five-step reaction sequence, which was then converted to (+)-4-deoxygigante- 
cin (1) via the formation of bis-tetrahydrofuran unit 1 I and a coupling reaction with iodo lactone synthon 1 6. 
© 1997 Elsevier Science Ltd. 

The Annonaceous acetogenins, which have been isolated from a number of plants of the Annonaceae,  have 
attracted much attention in view of their biological activities such as cytotoxic, antitumor, antifeedant, antiparasitic 
pesticidal, and immnosuppressive activities. ~ Thus far, more than 230 compounds have been isolated since 
isolation of the first in 1982.2 These compounds are characterized by one or more tetrahydrofuran rings, together 

with a terminal t~, t-unsaturated 7-1actone part on a C-35 or C-37 carbon chain. ~ Although several total syntheses 
of these compounds including some adjacent bis-tetrahydrofuranic acetogenins have been reported, 3 non-adjacenl 
bis-tetrahydrofuran type annonaceous acetogenins such as 4-deoxygigantecin have not been synthesized yet. 

4-Deoxygigantecin (1) was isolated from the bark of Goniothalamus giganteus by J. L. McLaughlin et al. 4 "m 
1992. The absolute stereochemisu3' of natural 4-deoxygigantecin has not yet been reported. However, we 
assumed that the compound (1) possessed, except for aC-4 carbinol center, the same absolute configuration as 
that of gigantecin (2), whose absolute stereostructure had been established by an X-ray crystallographic analysis, 
on the basis of the very similar optical rotation values of 1 and 2, as depicted in Fig. 1. Here we report a total 
synthesis of natural (+)-4-deoxygigantecin (1). This is the first example of the synthesis of a non-adjacent bis- 
tetrahydrofuran type annonaceous acetogenin. 
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The starting material was (-)-muricatacin (3), which had been reported earlier by us s and could be easily 
obtained in an enantiomerically pure form by recrystallization. The five-step sequence of reactions from 3, thai 

4247 



4248 

had been reported by us, 6 led to benzoate 4. Hydrolysis of this ester and reprotection with MOM ether gave bis- 
MOM ether 5, which was then converted to 7 by alkylating with iodide 67 employing n-BuLL Reduction of 7 
with Na in liquid ammonia and subsequent removal of the acetonide group with 60% aqueous AcOH gave /i 
olefinic diol 8 in high yield. Selective protection of the primary hydroxyl group of 8 as a TBS ether and 
successive treatment with MsC1/Et3N, TBAF and 10% aqueous NaOH afforded the desired epoxide 9. The 
coupling reaction of 9 with lithium trimethylsilylacetylide in the presence of BF3-Et208 and subsequent 
deprotection with TBAF gave 10 in excellent yield. Mesylate formation from 10 with MsCI/Et3N followed by the 
Sharpless asymmetric dihydroxylation 9 using AD mix ~z ,and subsequent cyclization with Triton B furnished the 
key bis-tetrahydrofuran ring-containing synthon 11, ~0 which was proved to have 92% de by ~H-NMR analysis ol 
the corresponding Mosher ester derivative (Scheme 1 ). 
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Scheme 1 
Reagents and conditions: a) NaOH, MeOH, 91%. b) MOMCI,/-Pr2NEt, CH2CI 2, 96%. 
c) n-BuLi, THF-HMPA, 70%. d) Na/NH3, t-BuOH, THF, 94%. e) 60% AcOH, 96%. 
f) TBSCI, Et3N, DMAP, CH2CI2, 95%. g) MsCI, Et3N, CH2CI2, 99%. h) TBAF, THF, 89%. 
t) 10% NaOH, THF, 87%. j)trimethylsilylacetylene, n-BuLl, BF3oEt20, THF, 96%. 
k) TBAF, THF, 89%. I) MsCI, Et3N, CH2CI 2, 97%. m) AD mix ~t, t-BuOH-H20, 88% (92% de). 
n) Triton B, MeOH, 56%. 

As shown in Scheme 2, the ~-lactone part 16 of I was constructed as follows. The substituted T-lactone 12 
was prepared by White's method ~ t, starting from (S)-(-)-ethyl lactate. Base-promoted alkylation of 12 with 
iodide 13 t2 and subsequent treatment with p-TsOH in MeOH gave alcohol 14. Oxidation with mCPBA followed 
by thermal elimination afforded butenolide 15. After oxidation of the hydroxyl group with Dess-Martin 

periodinane, treatment of the resulting aldehyde with CHI 3 in the presence of CI'CI213 afforded ~lactone part 16 
(E:Z = 8: l) (Scheme 2). 
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Scheme 2 
Reagents and conditions: a) NaHMDS, THF-HMPA, 89%. b) p-TsOH, MeOH, 96%. 
c) i:rnCPBA, CH2CI2, ii: toluene, reflux, 85%. d) Dess-Martin periodinane, CH2CI2, 95%. 
e) CHI3, CrCI2, THF, 85%. 

As shown in Scheme 3, completion of the carbon skeleton to give the coupled product 17 was achieved by 

application of Hoye's method. ~4 A Pd(O)-catalyzed cross coupling reaction of compound 11 with vinyl iodide 16 

gave 17. Finally, c~atalytic hydrogenation of 17 using Wilkinson's catalyst and subsequent deprotection of the 

MOM group with BF~oEt~O in the presence of dimethyl sulfide ~ gave (+)-4-deoxygigantecin (1)]6 in 95% overall 

yield. Its ~H-NMR data were in good agreement with those recorded for natural 1 and the optical rotation value 

{ [o~]o 23 + 16.0 (c O. 05, MeOH) } of the synthetic sample was also consistent with that of natural 1 { [~]D+ 15.5 (~ 

0.2, MeOH) }. 
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Reagents and conditions: a) Pd(PPh3)4, Et3N, Cul, benzene, 66%. 
b) H~/Rh(PPh3)3CI, benzene, c) BF3-Et20, dimethylsultide, 95% (2 steps). 
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